Neurobiology of Disease Two Molecular Pathways (NMD and ERAD) Contribute to a Genetic Epilepsy Associated with the GABAA Receptor GABRA1 PTC Mutation, 975delC, S326fs328X

نویسندگان

  • Jing-Qiong Kang
  • Wangzhen Shen
  • Robert L. Macdonald
چکیده

Approximately one-third of human genetic diseases are caused by premature translation-termination codon (PTC)-generating mutations. These mutations in sodium channel and GABAA receptor genes have been associated with idiopathic generalized epilepsies, but the cellular consequences of the PTCs on the mutant channel subunit biogenesis and function are unknown. The PTCs could result in translation of a truncated subunit, or more likely, trigger mRNA degradation through nonsense-mediated mRNA decay (NMD), thus preventing or reducing production of mutant subunit at the transcriptional level. The GABAA receptor 1 subunit mutation, 975delC, S326fs328X, is an autosomal dominant mutation associated with childhood absence epilepsy that generates a PTC in exon 8 of the 9 exon GABRA1 gene that is 74 bp upstream of intron 8. Using an intron 8-inclusion minigene that supports NMD, we demonstrated that mutant mRNA was substantially reduced, but not absent. Loss of mutant transcripts was blocked by ribosome inhibition or by silencing the NMD-essential gene hUPF-1. In both neurons and non-neuronal cells, the PTC caused substantial loss of mutant 1(S326fs328X) subunit mRNA through NMD with a minor portion of the mRNA escaping NMD and producing a mutant protein. The translated mutant protein had reduced stability due to endoplasmic reticulum associated degradation (ERAD) and had enhanced association with molecular chaperones. This study suggests that loss of mRNA due to activation of NMD and activation of ERAD by the mutant protein may contribute to epileptogenesis. The molecular mechanisms outlined here delineate a model for the pathogenesis of many PTC-generating mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner

Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA...

متن کامل

Deleterious Rare Variants Reveal Risk for Loss of GABAA Receptor Function in Patients with Genetic Epilepsy and in the General Population

Genetic epilepsies (GEs) account for approximately 50% of all seizure disorders, and familial forms include mutations in single GABAA receptor subunit genes (GABRs). In 144 sporadic GE cases (GECs), exome sequencing of 237 ion channel genes identified 520 GABR variants. Among these variants, 33 rare variants in 11 GABR genes were present in 24 GECs. To assess functional risk of variants in GECs...

متن کامل

A Review of Driver Genetic Alterations in Thyroid Cancers

Thyroid cancer is a frequent endocrine related malignancy with continuous increasing incidence. There has been moving development in understanding its molecular pathogenesis recently mainly through the explanation of the original role of several key signaling pathways and related molecular distributors. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, su...

متن کامل

Ion channels and epilepsy

Ion channels play a central role in the generation and control of neuronal excitability. Genetic defects in ion channels are associated with several forms of human idiopathic epilepsies. These defects range from nonsense and missense point mutations to insertion, truncation and splice site mutations producing altered, non-functional or negative-dominant channel subunits. To date, 12 mutated gen...

متن کامل

Cytogenetic and FMS-Like Tyrosine Kinase 3 Mutation Analyses in Acute Promyelocytic Leukemia Patients

Background: The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009